Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489224

RESUMO

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (e.g., visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time (Jun et al., 2022). However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here, we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex - areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action.


Assuntos
Córtex Visual , Vias Visuais , Vias Visuais/fisiologia , Córtex Visual/fisiologia , Campos Visuais , Neurônios/fisiologia , Estimulação Luminosa
2.
bioRxiv ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37502939

RESUMO

How neural representations preserve information about multiple stimuli is mysterious. Because tuning of individual neurons is coarse (for example, visual receptive field diameters can exceed perceptual resolution), the populations of neurons potentially responsive to each individual stimulus can overlap, raising the question of how information about each item might be segregated and preserved in the population. We recently reported evidence for a potential solution to this problem: when two stimuli were present, some neurons in the macaque visual cortical areas V1 and V4 exhibited fluctuating firing patterns, as if they responded to only one individual stimulus at a time. However, whether such an information encoding strategy is ubiquitous in the visual pathway and thus could constitute a general phenomenon remains unknown. Here we provide new evidence that such fluctuating activity is also evoked by multiple stimuli in visual areas responsible for processing visual motion (middle temporal visual area, MT), and faces (middle fundus and anterolateral face patches in inferotemporal cortex - areas MF and AL), thus extending the scope of circumstances in which fluctuating activity is observed. Furthermore, consistent with our previous results in the early visual area V1, MT exhibits fluctuations between the representations of two stimuli when these form distinguishable objects but not when they fuse into one perceived object, suggesting that fluctuating activity patterns may underlie visual object formation. Taken together, these findings point toward an updated model of how the brain preserves sensory information about multiple stimuli for subsequent processing and behavioral action. Impact Statement: We find neural fluctuations in multiple areas along the visual cortical hierarchy that could allow the brain to represent distinct co-occurring visual stimuli.

3.
Annu Rev Vis Sci ; 7: 201-223, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34242053

RESUMO

Coordination between different sensory systems is a necessary element of sensory processing. Where and how signals from different sense organs converge onto common neural circuitry have become topics of increasing interest in recent years. In this article, we focus specifically on visual-auditory interactions in areas of the mammalian brain that are commonly considered to be auditory in function. The auditory cortex and inferior colliculus are two key points of entry where visual signals reach the auditory pathway, and both contain visual- and/or eye movement-related signals in humans and other animals. The visual signals observed in these auditory structures reflect a mixture of visual modulation of auditory-evoked activity and visually driven responses that are selective for stimulus location or features. These key response attributes also appear in the classic visual pathway but may play a different role in the auditory pathway: to modify auditory rather than visual perception. Finally, while this review focuses on two particular areas of the auditory pathway where this question has been studied, robust descending as well as ascending connections within this pathway suggest that undiscovered visual signals may be present at other stages as well.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Mamíferos , Sensação , Órgãos dos Sentidos , Vias Visuais , Percepção Visual/fisiologia
4.
J Neurophysiol ; 119(2): 738-751, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118195

RESUMO

Activity of cortical inhibitory interneurons is rapidly reduced in response to monocular deprivation during the critical period for ocular dominance plasticity and in response to salient events encountered during learning. In the case of primary sensory cortex, a decrease in mean evoked firing rate of parvalbumin-positive (PV) inhibitory neurons is causally linked to a reorganization of excitatory networks following sensory perturbation. Converging evidence indicates that it is deprivation, and not an imbalance between open- and closed-eye inputs, that triggers rapid plasticity in PV neurons. However, this has not been directly tested in vivo. Using two-photon guided cell-attached recording, we examined the impact of closing both eyes for 24 h on PV neuron response properties in mouse primary visual cortex. We found that binocular deprivation induces a 30% reduction in stimulus-evoked mean firing rate and that this reduction is specific to critical period-aged mice. The number of PV neurons showing detectable tuning to orientation increased after 24 h of deprivation, and this effect was also specific to critical period-aged mice. In contrast to evoked mean firing rate and orientation tuning, measurements of trial-to-trial variability revealed that stimulus-driven decreases in variability are significantly dampened by deprivation during both the critical period and the postcritical period. These data establish that open-eye inputs are not required to drive deprivation-induced weakening of PV neuron evoked activity and that other aspects of in vivo PV neuron activity are malleable throughout life. NEW & NOTEWORTHY Parvalbumin-positive (PV) neurons in sensory cortex are generally considered to be mediators of experience-dependent plasticity, and their plasticity is restricted to the critical period. However, in regions outside of sensory cortex, accumulating evidence demonstrates that PV neurons are plastic in adults, raising the possibility that aspects of PV response properties may be plastic throughout life. Here we identify a feature of in vivo PV neuron activity that remains plastic past the critical period.


Assuntos
Potenciais Evocados Visuais , Interneurônios/fisiologia , Plasticidade Neuronal , Córtex Visual/fisiologia , Envelhecimento/fisiologia , Animais , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Inibição Neural , Parvalbuminas/genética , Parvalbuminas/metabolismo , Visão Binocular , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...